题目内容
【题目】如图,在平面直角坐标系中,菱形ABCD的顶点A在x轴负半轴上,顶点B在x轴正半轴上.若抛物线p=ax2-10ax+8(a>0)经过点C、D,则点B的坐标为________.
【答案】(4,0)
【解析】
根据抛物线p=ax210ax+8(a>0)经过点C、D和二次函数图象具有对称性,可以求得该抛物线顶点的横坐标和CD的长,然后根据菱形的性质和勾股定理可以求得AO的长,从而可以求得OB的长,进而写出点B的坐标.
解:∵抛物线p=ax210ax+8=a(x5)225a+8,
∴该抛物线的顶点的横坐标是x=5,当x=0时,y=8,
∴点D的坐标为:(0,8),
∴OD=8,
∵抛物线p=ax210ax+8(a>0)经过点C、D,CD∥AB∥x轴,
∴CD=5×2=10,
∴AD=10,
∵∠AOD=90°,OD=8,AD=10,
∴AO=,
∵AB=10,
∴OB=10AO=106=4,
∴点B的坐标为(4,0),
故答案为:(4,0)
【题目】在“朗读者”节目的影响下,某中学在暑期开展了“好书伴我成长”读书话动,并要求读书要细读,最少要读完2本书,最多不建议超过5本。初一年级5个班,共200名学生,李老师为了了解学生暑期在家的读书情况,给全班同学布置了一项调查作业:了解初一年级学生暑期读书情况.班中三位同学各自对初一年级读书情况进行了抽样调查,并将数据进行了整理,绘制的统计图表分别为表1、表2、表3.
表1:在初一年级随机选择5名学生暑期读书情况的统计表
阅读书数量(本) | 2 | 3 | 4 | 5 |
人数 | 2 | 1 | 1 | 1 |
表2:在初一年级“诵读班”班随机选取20名学生暑期读书情况的统计表
阅读书数量(本) | 2 | 3 | 4 | 5 |
人数 | 0 | 1 | 4 | 15 |
表3:在初一年级随机选取20名学生暑期读书情况的统计表
阅读书数量(本) | 2 | 3 | 4 | 5 |
人数 | 2 | 8 | 6 | 4 |
问题1:根据以上材料回答:三名同学中,哪一位同学的样本选取更合理,并简要说明其他两位同学选取样本的不足之处;
老师又对合理样本中的所有学生进行了“阅读动机”的调研,并制作成了如下统计图.
问题2:通过统计图的信息你认为“阅读动机”
在“40%”的群体,暑期读几本书的可能性大,并说出你的理由.
【题目】食品厂从生产的袋装食品中抽出样品袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负来表示,记录如下表;
与标准质量的差值(单位:克) | ||||||
袋数 |
(1)这批样品的平均质量比标准质量是超过还是不足?平均每袋超过或不足多少克?
(2)若每袋标准质量为克,求抽样检测的样品总质量是多少?