题目内容
【题目】在△ABC中,∠AOB=90°,AO=BO,直线MN经过点O,且AC⊥MN于C,BD⊥MN于D
(1)当直线MN绕点O旋转到图①的位置时,求证:CD=AC+BD;
(2)当直线MN绕点O旋转到图②的位置时,求证:CD=AC﹣BD;
(3)当直线MN绕点O旋转到图③的位置时,试问:CD、AC、BD有怎样的等量关系?请写出这个等量关系,并加以证明.
【答案】(1)证明见解析;(2)证明见解析;(3)CD=BD﹣AC,证明见解析.
【解析】试题分析:(1)通过证明△ACO≌△ODB得到OC=BD,AC=OD,则CD=AC+BD;
(2)通过证明△ACO≌△ODB得到OC=BD,AC=OD,则CD=AC-BD;
(3)通过证明△ACO≌△ODB得到OC=BD,AC=OD,则CD=BD-AC.
试题解析:(1)如图1,
∵△AOB中,∠AOB=90°,
∴∠AOC+∠BOD=90°,
直线MN经过点O,且AC⊥MN于C,BD⊥MN于D,
∴∠ACO=∠BDO=90°
∴∠AOC+∠OAC=90°,
∴∠OAC=∠BOD,
在△ACO和△ODB中,
∴△ACO≌△ODB(AAS),
∴OC=BD,AC=OD,
∴CD=AC+BD;
(2)如图2,
∵△AOB中,∠AOB=90°,
∴∠AOC+∠BOD=90°,
直线MN经过点O,且AC⊥MN于C,BD⊥MN于D,
∴∠ACO=∠BDO=90°
∴∠AOC+∠OAC=90°,
∴∠OAC=∠BOD,
在△ACO和△ODB中,
,
∴△ACO≌△ODB(AAS),
∴OC=BD,AC=OD,
∴CD=OD﹣OC=AC﹣BD,即CD=AC﹣BD.
(3)如图3,
∵△AOB中,∠AOB=90°,
∴∠AOC+∠BOD=90°,
直线MN经过点O,且AC⊥MN于C,BD⊥MN于D,
∴∠ACO=∠BDO=90°
∴∠AOC+∠OAC=90°,
∴∠OAC=∠BOD,
在△ACO和△ODB中,
,
∴△ACO≌△ODB(AAS),
∴OC=BD,AC=OD,
∴CD=OC﹣OD=BD﹣AC,
即CD=BD﹣AC.