题目内容
【题目】如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.
(1)判断直线BC与⊙O的位置关系,并说明理由;
(2)若AC=3,∠B=30°.
①求⊙O的半径;
②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)
【答案】(1)BC与⊙O相切,理由见解析;(2)①⊙O的半径为2.②S阴影= .
【解析】试题(1)根据题意得:连接OD,先根据角平分线的性质,求得∠BAD=∠CAD,进而证得OD∥AC,然后证明OD⊥BC即可;
(2)设⊙O的半径为r.则在Rt△OBD中,利用勾股定理列出关于r的方程,通过解方程即可求得r的值;然后根据扇形面积公式和三角形面积的计算可以求得结果.
试题解析:(1)相切.
理由如下:
如图,连接OD.
∵AD平分∠BAC,
∴∠BAD=∠CAD.
∵OA=OD,
∴∠ODA=∠BAD,
∴∠ODA=∠CAD,
∴OD∥AC.
又∠C=90°,
∴OD⊥BC,
∴BC与⊙O相切
(2)①在Rt△ACB和Rt△ODB中,
∵AC=3,∠B=30°,
∴AB=6,OB=2OD.又OA=OD=r,
∴OB=2r,
∴2r+r=6,
解得r=2,
即⊙O的半径是2
②由①得OD=2,则OB=4,BD=2,
S阴影=S△BDO-S扇形CDE=×2×2-=2-π
练习册系列答案
相关题目