题目内容
【题目】在平面直角坐标系中,抛物线N过A(﹣1,3),B(4,8),O(0,0)三点
(1)求该抛物线和直线AB的解析式.
(2)平移抛物线N,求同时满足以下两个条件的平移后的抛物线解析式:①平移后抛物线的顶点在直线AB上;②设平移后抛物线与y轴交于点C,如果S△ABC=3S△ABO.
【答案】(1)y=x2﹣2x;y=x+4;(2)平移后的抛物线解析式为y=(x+4)2或y=(x﹣3)2+7.
【解析】
(1)利用待定系数法求抛物线M和直线AB的解析式;
(2)先求出直线AB与y轴的交点坐标为(0,4),设平移后抛物线的顶点坐标为(t,t+4),则平移后的抛物线解析式为y=(x﹣t)2+t+4,接着表示出N(0,t2+t+4),利用三角形面积公式得到|t2+t+4﹣4|(4+1)=4××4×(4+1),然后解绝对值方程求出得到平移后的抛物线解析式.
解:(1)设抛物线解析式为y=ax2+bx+c,
把A(﹣1,3),B(4,8),O(0,0)代入得 ,解得,
∴抛物线解析式为y=x2﹣2x;
设直线AB的解析式为y=mx+n,
把A(﹣1,3),B(4,8)代入得,解得m=1,n=4,
∴直线AB的解析式为y=x+4;
(2)当x=0时,y=x+4=4,则直线AB与y轴的交点坐标为(0,4),
设平移后抛物线的顶点坐标为(t,t+4),则平移后的抛物线解析式为y=(x﹣t)2+t+4,
当x=0时,y=(0﹣t)2+t+4=t2+t+4,则C(0,t2+t+4),
∵S△ABC=3S△ABO,
∴|t2+t+4﹣4|(4+1)=3××4×(4+1),
即|t2+t|=12,
方程t2+t=﹣12没有实数解,
解方程t2+t=12得t1=﹣4,t2=3,
∴平移后的抛物线解析式为y=(x+4)2或y=(x﹣3)2+7.