题目内容
【题目】提出问题:如图①,在四边形ABCD中,P是AD边上任意一点,
△PBC与△ABC和△DBC的面积之间有什么关系?
探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:
(1)当AP=AD时(如图②):
∵AP=AD,△ABP和△ABD的高相等,
∴S△ABP=S△ABD.
∵PD=AD﹣AP=AD,△CDP和△CDA的高相等,
∴S△CDP=S△CDA.
∴S△PBC=S四边形ABCD﹣S△ABP﹣S△CDP
=S四边形ABCD﹣S△ABD﹣S△CDA
=S四边形ABCD﹣(S四边形ABCD﹣S△DBC)﹣(S四边形ABCD﹣S△ABC)
=S△DBC+S△ABC.
(2)当AP=AD时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;
(3)当AP=AD时,S△PBC与S△ABC和S△DBC之间的关系式为: ;
(4)一般地,当AP=AD(n表示正整数)时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;
问题解决:当AP=AD(0≤≤1)时,S△PBC与S△ABC和S△DBC之间的关系式为: .
【答案】答案见解析
【解析】试题分析:(2)仿照(1)的方法,只需把换为即可;
(3)注意由(1)(2)得到一定的规律;
(4)综合(1)(2)(3)得到面积和线段比值之间的一般关系;
(5)利用(4),得到更普遍的规律.
试题解析:(2)∵△ABP和△ABD的高相等,
又 △CDP和△CDA的高相等,
∴S△PBC=S四边形ABCDS△ABPS△CDP=S四边形ABCDS△ABDS△CDA,
=S四边形ABCD (S四边形ABCDS△DBC) (S四边形ABCDS△ABC),
(3)
(4)
△ABP和△ABD的高相等,
又△CDP和△CDA的高相等,
∴S△PBC=S四边形ABCDS△ABPS△CDP=S四边形ABCDS△ABDS△CDA,
=S四边形ABCD (S四边形ABCDS△DBC) (S四边形ABCDS△ABC),
问题解决: