题目内容
【题目】如图,将边长为8cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A’B’C’,当两个三角形重叠部分的面积占△ACD面积的一半时,△ABC平移的距离是______.
【答案】4cm.
【解析】
根据平移的性质,结合阴影部分是平行四边形,△AA′H与△HCB′都是等腰直角三角形,则若设AA′=x,则阴影部分的底长为x,高A′D=8x,根据平行四边形的面积公式即可列出方程求解.
解:设AC交A′B′于H,
∵∠A=45°,∠D=90°
∴△A′HA是等腰直角三角形,
设A′H=AA′=x,则阴影部分的底长为x,高A′D=8x,
∵,
∴,
∴x(8-x)=16,
解得:x=4,
即AA′=4cm,
∴△ABC平移的距离是4cm;
故答案为:4cm.
【题目】参照学习函数的过程与方法,探究函数y=的图象与性质.
因为y=,即y=﹣+1,所以我们对比函数y=﹣来探究.
列表:
x | … | ﹣4 | ﹣3 | ﹣2 | ﹣1 | ﹣ | 1 | 2 | 3 | 4 | … | |
y=﹣ | … | 1 | 2 | 4 | ﹣4 | ﹣1 | 1 | ﹣ | ﹣ | … | ||
y= | … | 2 | 3 | 5 | ﹣3 | ﹣1 | 0 | … |
描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=相应的函数值为纵坐标,描出相应的点,如图所示:
(1)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;
(2)观察图象并分析表格,回答下列问题:
①当x<0时,y随x的增大而 ;(填“增大”或“减小”)
②y=的图象是由y=﹣的图象向 平移 个单位而得到;
③图象关于点 中心对称.(填点的坐标)
(3)设A(x1,y1),B(x2,y2)是函数y=的图象上的两点,且x1+x2=0,试求y1+y2+3的值.
【题目】弹簧是一种利用弹性来工作的机械零件,用弹性材料制成的零件在外力作用下发生形变,除去外力后又恢复原状.某班同学在探究弹簧的长度与所受外力的变化关系时,通过实验记录得到的数据如下表:
砝码的质量x(克) | 0 | 50 | 100 | 150 | 200 | 250 | 300 | 400 | 500 |
指针的位置y(cm) | 2 | 3 | 4 | 5 | 6 | 7 | 7.5 | 7.5 | 7.5 |
小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究,下面是小腾的探究过程,请补充完整.
(1)根据上述表格在平面直角坐标系中补全该函数的图象;
(2)根据画出的函数图象,写出:
①当x=0时,y= ,它的实际意义是 ;
②当指针的位置y不变时,砝码的质量x的取值范围为 .