题目内容
【题目】如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次交换,如此这样,连续经过2016次变换后,正方形ABCD的对角线交点M的坐标变为 .
【答案】(﹣2014,2)
【解析】解:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1). ∴对角线交点M的坐标为(2,2),
根据题意得:第1次变换后的点M的对应点的坐标为(2﹣1,﹣2),即(1,﹣2),
第2次变换后的点M的对应点的坐标为:(2﹣2,2),即(0,2),
第3次变换后的点M的对应点的坐标为(2﹣3,﹣2),即(﹣1,﹣2),
第n次变换后的点M的对应点的为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2),
∴连续经过2016次变换后,正方形ABCD的对角线交点M的坐标变为(﹣2014,﹣2).
所以答案是:(﹣2014,2).
【考点精析】认真审题,首先需要了解正方形的性质(正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形).
【题目】某公司为了解员工对“六五”普法知识的知晓情况,从本公司随机选取40名员工进行普法知识考查,对考查成绩进行统计(成绩均为整数,满分100分),并依据统计数据绘制了如下尚不完整的统计表.解答下列问题:
组别 | 分数段/分 | 频数/人数 | 频率 |
1 | 50.5~60.5 | 2 | a |
2 | 60.5~70.5 | 6 | 0.15 |
3 | 70.5~80.5 | b | c |
4 | 80.5~90.5 | 12 | 0.30 |
5 | 90.5~100.5 | 6 | 0.15 |
合计 | 40 | 1.00 |
(1)表中a= , b= , c=;
(2)请补全频数分布直方图;
(3)该公司共有员工3000人,若考查成绩80分以上(不含80分)为优秀,试估计该公司员工“六五”普法知识知晓程度达到优秀的人数.