题目内容
【题目】如图,已知抛物线y=﹣x2+2x+3与坐标轴交于A,B,C三点,抛物线上的点D与点C关于它的对称轴对称.
(1)直接写出点D的坐标和直线AD的解析式;
(2)点E是抛物线上位于直线AD上方的动点,过点E分别作EF∥x轴,EG∥y轴并交直线AD于点F、G,求△EFG周长的最大值;
(3)若点P为y轴上的动点,则在抛物线上是否存在点Q,使得以A,D,P,Q为顶点的四边形是平行四边形?若存在,请求出点Q的坐标,若不存在,请说明理由.
【答案】
(1)
解:将x=0代入得y=3,
∴C(0,3).
∵抛物线的对称轴为x=﹣ =1,C(0,3),
∴D(2,3).
把y=0代入抛物线的解析式得:0=﹣x2+2x+3,解得x=3或x=﹣1,
∴A(﹣1,0).
设直线AD的解析式为y=kx+b,将点A和点D的坐标代入得: ,解得:k=1,b=1,
∴直线AD的解析式为y=x+1.
(2)
解:如图1所示:
∵直线AD的解析式为y=x+1,
∴∠DAB=45°.
∵EF∥x轴,EG∥y轴,
∴∠GEF=90°,∠GFE=∠DAB=45°
∴△EFG是等腰直角三角形.
∴△EFG的周长=EF+FG+EG=(2+ )EG.
依题意,设E(t,﹣t2+2t+3),则G(t,t+1).
∴EG=﹣t2+2t+3﹣(t+1)=﹣(t﹣ )2+ .
∴EG的最大值为 .
∴△EFG的周长的最大值为 + .
(3)
解:存在.①以AD为平行四边形的边时,PQ∥AD,PQ=AD.
∵A,D两点间的水平距离为3,
∴P,Q两点间的水平距离也为3.
∴点Q的横坐标为3或﹣3.
将x=3和x=﹣3分别代入y=﹣x2+2x+3得y=0或y=﹣12.
∴Q(3,0)或(﹣3,﹣12).
②当AD为平行四边形的对角线时,设AD的中点为M,
∵A(﹣1,0),D(2,3),M为AD的中点,
∴M( , ).
设点Q的横坐标为x,则 = ,解得x=1,
∴点Q的横坐标为1.
将x=1代入y=﹣x2+2x+3得y=4.
∴这时点Q的坐标为(1,4).
综上所述,当点Q的坐标为Q(3,0)或(﹣3,﹣12)或(1,4)时,以A,D,P,Q为顶点的四边形是平行四边形.
【解析】(1)先求得点C的坐标,然后再求得抛物线的对称轴,由点C与点D关于x=1对称可求得点D的坐标,把y=0代入抛物线的解析式可求得对应的x的值,从而可得到点A的坐标,然后利用待定系数法求得直线AD的解析式即可;(2)首先证明△EFG为等腰直角三角形,则△EFG的周长=(2+ )EG,设E(t,﹣t2+2t+3),则G(t,t+1),然后得到EG与t的函数关系式,利用配方法可求得EG的最大值,最后依据△EFG的周长=(2+ )EG求解即可;(3)分为AD为平行四边形的边和AD为平行四边形的对角线时,两种情况,可先利用平行四边形的性质求得点Q的横坐标,然后将点Q的横坐标代入抛物线的解析式可求得点Q的纵坐标.