题目内容
【题目】如图,已知中, , , ,D是AB边的中点,E是AC边上一点,联结DE,过点D作交BC边于点F,联结EF.
(1)如图1,当时,求EF的长;
(2)如图2,当点E在AC边上移动时, 的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出的正切值;
(3)如图3,联结CD交EF于点Q,当是等腰三角形时,请直接写出BF的长.
【答案】(1);(2)不变;(3)或3或.
【解析】试题分析:(1)由已知条件易求DE=3,DF=4,再由勾股定理EF=5;
(2)过点作, ,垂足分别为点、,由(1)可得DH=3,DG=4;再证,即可得出结论;
(3)分三种情况讨论即可.
(1)∵,
∴
∵
∴
∵是边的中点
∴
∵
∴
∴
∴
∴
∵在中,
∴
∵
∴
又∵
∴四边形是矩形
∴
∵在中,
∴
(2)不变
过点作, ,垂足分别为点、
由(1)可得,
∵,
∴
又∵,
∴四边形是矩形
∴
∵
∴ 即
又∵
∴
∴
∵
∴
(3)1° 当时,易证,即
又∵,D是AB的中点
∴
∴
2° 当时,易证
∵在中,
∴设,则,
当时,易证,
∴
∵
∴
∴
∴
∵
∴
∴ 解得
∴
∴
3° 在BC边上截取BK=BD=5,由勾股定理得出
当时,易证
∴设,则,
∴
∵
∴
∴
∴
∵
∴
∴ 解得
∴
∴
练习册系列答案
相关题目