题目内容
【题目】已知抛物线y=ax2经过点A(﹣2,﹣8).
(1)求此抛物线的函数解析式;
(2)写出这个二次函数图象的顶点坐标、对称轴;
(3)判断点B(﹣1,﹣4)是否在此抛物线上;
(4)求出此抛物线上纵坐标为﹣6的点的坐标.
【答案】(1) y=﹣2x2 ;(2) 顶点坐标为(0,0),对称轴为y轴;(3) 不在;(4) (,﹣6)或(﹣,﹣6).
【解析】分析:(1)根据二次函数图象上点的坐标满足其解析式,把A点坐标代入解析式得到关于a的方程,然后解方程即可.
(2)根据图象和性质直接写出顶点坐标、对称轴即可.
(3)把点B(-1,-4)代入解析式,即可判断;
(4)把y=-6代入解析式,即可求得;
详解:(1)∵抛物线y=ax2经过点A(﹣2,﹣8),
∴a(﹣2)2=﹣8,
∴a=﹣2,
∴此抛物线对应的函数解析式为y=﹣2x2.
(2)由题可得,抛物线的顶点坐标为(0,0),对称轴为y轴;
(3)把x=﹣1代入得,y=﹣2×(﹣1)2=﹣2≠﹣4,
∴点B(﹣1,﹣4)不在此抛物线上;
(4)把y=﹣6代入y=﹣2x2得,﹣6=﹣2x2,
解得x=±,
∴抛物线上纵坐标为﹣6的点的坐标为(,﹣6)或(﹣,﹣6).
【题目】孝感市委市政府为了贯彻落实国家的“精准扶贫”战略部署,组织相关企业开展扶贫工作,博大公司为此制定了关于帮扶A、B两贫困村的计划.今年3月份决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗.已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:
目的地 费用 车型 | A村(元/辆) | B村(元/辆) |
大货车 | 800 | 900 |
小货车 | 400 | 600 |
(1)求这15辆车中大小货车各多少辆?
(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总运费为y元;
①试求出y与x的函数解析式;
②若运往A村的鱼苗不少于108箱,请你写出使总运费最少的货车调配方案,并求出最少运费.