题目内容
【题目】一个不透明的口袋里装有红、黄、绿三种颜色的球(除颜色不同外其余都相同),其中红球有2个,黄球有1个,从中任意捧出1球是红球的概率为.
(1)试求袋中绿球的个数;
(2)第1次从袋中任意摸出1球(不放回),第2次再任意摸出1球,请你用画树状图或列表格的方法,求两次都摸到红球的概率.
【答案】(1)绿球有1个(2)
【解析】试题分析:(1)此题的求解方法是:借助于方程求解;(2)根据简单事件的概率求法解答即可;(3)此题需要两步完成,所以采用树状图或者列表法都比较简单.
试题解析::(1)设绿球的个数为x.由题意,得: ,解得x=1,经检验x=1是所列方程的根,所以绿球有1个;(2)P(任意摸出一个球是黄球)=,(3)根据题意,画树状图:
由图知共有12种等可能的结果,即(红1,红2),(红1,黄),(红1,绿),(红2,红1),(红2,黄),(红2,绿),(黄,红1),(黄,红2),(黄,绿),(绿,红1),(绿,红2),(绿,黄),其中两次都摸到红球的结果有两种(红,红),(红,红).∴P(两次都摸到红球)=;
或根据题意,画表格:
∴P(两次都摸到红球)=.
练习册系列答案
相关题目