题目内容
【题目】分解因式:
【答案】(x-z)(y-z)(x-y)(x+y+z)
【解析】
去括号整理后可得x3(y-z)+y3(z-x)+z3(x-y),由x-y=(x-z)+(z-y),原式可变为x3(y-z)+y3(z-x)+z3[(x-z)+(z-y)],将中括号去掉,把小括号作为整体,重新分组分解即可.
xy(x2-y2)+yz(y2-z2)+zx(z2-x2)
=x3y-xy3+y3z-yz3+z3x-zx3
=x3(y-z)+y3(z-x)+z3(x-y)
∵x-y=(x-z)+(z-y),
∴原式=x3(y-z)+y3(z-x)+z3[(x-z)+(z-y)]
=(x3-z3)(y-z)+(y3-z3)(z-x)
=(x-z)(x2+xz+z2)(y-z)+(y-z)(y2+yz+z2)(z-x)
=(x-z)(y-z)(x2+zx+z2-y2-yz-z2)
=(x-z)(y-z)(x-y)(x+y+z).
练习册系列答案
相关题目