题目内容

如图,△ABE和△ACF分别是以△ABC的AB、AC为边的正三角形,CE、BF相交于O.则∠EOB的度数为


  1. A.
    45°
  2. B.
    60°
  3. C.
    70°
  4. D.
    90°
B
分析:首先根据题意推出△AEC≌△ABF,根据∠AEO+∠BEO=60°,推出∠BEO+∠ABO=60°,即得∠BEO+∠ABO+∠EBA=120°,根据三角形内角和定理,即可推出∠EOB=60°.
解答:∵∠EAB=∠FAC,
∴∠EAC=∠BAF,
在△AEC和△ABF中,
∵AE=AB,∠EAC=∠BAF,AC=AF,
∴△AEC≌△ABF,
∴∠AEO=∠ABO
∵∠AEO+∠BEO=60°
∴∠BEO+∠ABO=60°
∵在△EBO中,∠BEO+∠ABO=60°,∠EBA=60°,∠BEO+∠ABO+∠EBA=120°
∴∠EOB=60°
故选择B.
点评:本题主要考查全等三角形的判定和性质、三角形内角和定理,关键在于通过求证△AEC≌△ABF,推出∠BEO+∠ABO+∠EBA=120°.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网