题目内容

56、如图,O为平行四边形ABCD的对角线AC的中点,过点O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.
(1)图中共有几对全等三角形,请把它们都写出来;
(2)求证:∠MAE=∠NCF.
分析:(1)单个三角形全等的是:△AMO≌△CNO,△AME≌△CNF.由2部分组成全等的是:△OCF≌△OAE,△ABC≌△CDA;
(2)由题中已知条件可证得△OCF≌△OAE,进而求得∠EAO=∠FCO,而后利用平行四边形的对边平行的性质求得相应的内错角相等,进而求解.
解答:解:(1)有4对全等三角形.
分别为△AMO≌△CNO,△OCF≌△OAE,△AME≌△CNF,△ABC≌△CDA;

(2)证明:∵OA=OC,∠1=∠2,OE=OF,
∴△OCF≌△OAE.
∴∠EAO=∠FCO.
在平行四边形ABCD中,AB∥CD,
∴∠BAO=∠DCO.
∴∠EAM=∠NCF.
点评:找三角形全等应有规律的去找,先找单个的全等三角形,再找由2部分或2部分以上组成全等的三角形.本题的难点在于利用平行四边形的对边平行的性质得到一组内错角相等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网