题目内容
【题目】如图,在平面直角坐标系中,已知l1∥l2,直线l1经过原点O,直线l2对应的函数表达式为,点A在直线l2上,AB⊥l1,垂足为B,则线段AB的长为( )
A. 4 B. 6 C. 8 D.
【答案】D
【解析】
过点O作OC垂直于l2交点为C,得出四边形OCAB是矩形,则OC=AB;分别求得l2与两个坐标轴的交点坐标,在l2与两个坐标轴围成的直角三角形中利用勾股定理与三角形的面积求得OC即可得出答案
解:如图,
过点O作OC垂直于l2交点为C
∵l1∥l2, AB⊥l1, OC⊥l2
∴四边形OCAB是矩形,
∴OC=AB
∵直线l2与两个坐标轴的交点坐标分别为D(0,8),E(-6,0)
∴DE==10
∴DE×OC=OE×OD
即×10×OC=×6×8
解得:OC=
∴AB=
故选D
练习册系列答案
相关题目
【题目】A,B,C三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如下表和图①:
A | B | C | |
笔试 | 85 | 95 | 90 |
口试 | 80 | 85 |
(1)请将表格和图①中的空缺部分补充完整;
(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图②(没有弃权票,每名学生只能推荐一人),请计算每人的得票数;
(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4∶3∶3的比确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.