题目内容
【题目】如图,△ABC,∠C=90°,AC=BC=a,在△ABC中截出一个正方形A1B1C1D1 , 使点A1 , D1分别在AC,BC边上,边B1C1在AB边上;在△BC1D1在截出第二个正方形A2B2C2D2 , 使点A2 , D2分别在BC1 , D1C1边上,边B2C2在BD1边上;…,依此方法作下去,则第n个正方形的边长为 .
【答案】()na
【解析】设正方形A1B1C1D1的边长为x,∵△CA1D1和△AA1B1都是等腰直角三角形,∴A1C= x,AA1= x,∴ x+x=a,解得x= a,即第1个正方形的边长为 a,设正方形A2B2C2D2的边长为y,∵△C2D1D2和△C1A2D2都是等腰直角三角形,∴C1D2= y,D1D2=y,∴y+y=a,解得y=()2a,即第2个正方形的边长为()2a,同理可得第3个正方形的边长为( )3a,∴第n个正方形的边长为()na.所以答案是()na.
【考点精析】通过灵活运用等腰直角三角形和正方形的性质,掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°;正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形即可以解答此题.
【题目】某商场试销一种商品,成本为每件200元,规定试销期间销售单价不低于成本单价,且获利不得高于50%,一段时间后,发现销售量y(件)与销售单价x(元)之间的函数关系如下表:
销售单价x(元) | … | 230 | 235 | 240 | 245 | … |
销售量y(件) | … | 440 | 430 | 420 | 410 | … |
(1)请根据表格中所给数据,求出y关于x的函数关系式;
(2)设商场所获利润为w元,将商品销售单价定为多少时,才能使所获利润最大?最大利润是多少?
【题目】某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:
x | 30 | 32 | 34 | 36 |
y | 40 | 36 | 32 | 28 |
(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);
(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?
(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?