题目内容

有两个直角三角形,在△ABC中,∠ACB=90°,AC=3,BC=6,在△DEF中,∠FDE=90°,DE=DF=4。将这两个直角三角形按图1所示位置摆放,其中直角边在同一直线上,且点与点重合。现固定,将以每秒1个单位长度的速度在上向右平移,当点与点重合时运动停止。设平移时间为秒。

(1)当       秒时,边恰好经过点;当       秒时,运动停止;
(2)在平移过程中,设重叠部分的面积为,请直接写出的函数关系式,并写出的取值范围;
(3)当停止运动后,如图2,为线段上一点,若一动点从点出发,先沿方向运动,到达点后再沿斜坡方向运动到达点,若该动点在线段上运动的速度是它在斜坡上运动速度的2倍,试确定斜坡的坡度,使得该动点从点运动到点所用的时间最短。(要求,简述确定点位置的方法,但不要求证明。)

(1)2,7;(2)当0<t≤2时,,当2<t≤3时,;3<t≤4时,;当4<t<7时,;(3).

解析试题分析:(1)过E作EH∥AB,交l于H,则AH为AB边移动的距离,利用△AHE∽△CAB,求出AH的长,即可求出AB的运动时间;当C与F重合时,C点运动的路为CF,即可求出时间t.
(2)利用相似三角形的知识可分时间段求出S与t之间的函数关系式.
(3)在l的下方作∠DAM=30°,再过点E作EN⊥AM于N,交AD于G,此时运动时间最短,i=.
试题解析:(1)当   2  秒时,边恰好经过点;当   7  秒时,运动停止;
(2)当0<t≤2时,,当2<t≤3时,;3<t≤4时,;当4<t<7时,
(3)在l的下方作∠DAM=30°,再过点E作EN⊥AM于N,交AD于G,此时运动时间最短,

∴∠AGN=60°
∴∠EGD=60°

考点: (1)二次函数;(2)坡度.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网