题目内容

【题目】如图,ABCD中,AB=2,AD=1,∠ADC=60°,将ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E.
(1)求证:四边形BCED′是菱形;
(2)若点P时直线l上的一个动点,请计算PD′+PB的最小值.

【答案】
(1)

证明:∵将ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,

∴∠DAE=∠D′AE,∠DEA=∠D′EA,∠D=∠AD′E,

∵DE∥AD′,

∴∠DEA=∠EAD′,

∴∠DAE=∠EAD′=∠DEA=∠D′EA,

∴∠DAD′=∠DED′,

∴四边形DAD′E是平行四边形,

∴DE=AD′,

∵四边形ABCD是平行四边形,

∴AB=DC,AB∥DC,

∴CE=D′B,CE∥D′B,

∴四边形BCED′是平行四边形;

∵AD=AD′,

DAD′E是菱形


(2)

证明:∵四边形DAD′E是菱形,

∴D与D′关于AE对称,

连接BD交AE于P,则BD的长即为PD′+PB的最小值,

过D作DG⊥BA于G,

∵CD∥AB,

∴∠DAG=∠CDA=60°,

∵AD=1,

∴AG= ,DG=

∴BG=

∴BD= =

∴PD′+PB的最小值为


【解析】(1)利用翻折变换的性质以及平行线的性质得出∠DAE=∠EAD′=∠DEA=∠D′EA,进而利用平行四边形的判定方法得出四边形DAD′E是平行四边形,进而求出四边形BCED′是平行四边形,根据折叠的性质得到AD=AD′,然后又菱形的判定定理即可得到结论;(2)由四边形DAD′E是平行四边形,得到DAD′E是菱形,推出D与D′关于AE对称,连接BD交AE于P,则BD的长即为PD′+PB的最小值,过D作DG⊥BA于G,解直角三角形得到AG= ,DG= ,根据勾股定理即可得到结论.本题考查了平行四边形的性质,最短距离问题,勾股定理,菱形的判定和性质,正确的作出辅助线是解题的关键.
【考点精析】认真审题,首先需要了解平行四边形的性质(平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分),还要掌握菱形的判定方法(任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网