题目内容
【题目】如图,在△ABC中,以AB为直径作⊙O交BC于点D,∠DAC=∠B.
(1)求证:AC是⊙O的切线;
(2)点E是AB上一点,若∠BCE=∠B,tan∠B=,⊙O的半径是4,求EC的长.
【答案】(1)证明见解析;(2)CE=5.
【解析】(1)欲证明AC是切线,只要证明AB⊥AC即可;
(2)设EC=EB=x,在Rt△AEC中,利用勾股定理构建方程即可解决问题.
(1)∵AB是直径,
∴∠ADB=90°,
∴∠B+∠BAD=90°,
∵∠DAC=∠B,
∴∠DAC+∠BAD=90°,
∴∠BAC=90°,
∴BA⊥AC,
∴AC是⊙O的切线.
(2)∵∠BCE=∠B,
∴EC=EB,设EC=EB=x,
在Rt△ABC中,tan∠B=,AB=8,
∴AC=4,
在Rt△AEC中,∵EC2=AE2+AC2,
∴x2=(8﹣x)2+42,
解得x=5,
∴CE=5.
【题目】某出租车司机从公司出发,在东西方向的人民路上连续接送批客人,行驶路程记录如下(规定向东为正,向西为负,单位:):
第批 | 第批 | 第批 | 第批 | 第批 |
(1)接送完第批客人后,该驾驶员在公司什么方向,距离公司多少千米?
(2)若该出租车每千米耗油升,那么在这过程中共耗油多少升?
(3)若该出租车的计价标准为:行驶路程不超过收费元,超过的部分按每千米元收费,在这过程中该驾驶员共收到车费多少元?
【题目】九年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个选项,每位同学仅选一项,根据调查结果绘制了如下不定整的频数分布表和扇形统计图.
类别 | 频数(人数) | 频率 |
小说 | 16 |
|
戏剧 | 4 | |
散文 | a |
|
其他 | b | |
合计 | 1 |
根据图表提供的信息,解答下列问题:
(1)直接写出a,b,m的值;
(2)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用列表法或画树状图的方法,求选取的2人恰好乙和丙的概率.