题目内容
【题目】如图,AB是⊙O的直径CD是弦,若AB=10cm,CD=8cm,那么A、B两点到直线CD的距离之和为 cm.
【答案】6
【解析】解:过O作OG⊥CD于G,连接OC,如图所示,
∵OG⊥CD,CD=8cm,
∴G为CD的中点,即CG=DG=4cm,
在Rt△OCG中,OC=AB=5cm,CG=4cm,
根据勾股定理得:
又AE⊥EF,OG⊥EF,BF⊥EF,
∴AE∥OG∥BF,又O为AB的中点,
∴G为EF的中点,即OG为梯形AEFB的中位线,
∴OG=(AE+BF),
则AE+BF=2OG=6cm.
所以答案是:6cm.
【考点精析】通过灵活运用垂径定理,掌握垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧即可以解答此题.
练习册系列答案
相关题目
【题目】研究“掷一枚图钉,钉尖朝上”的概率,两个小组用同一个图钉做试验进行比较,他们的统计数据如下:
掷图钉的次数 | 50 | 100 | 200 | 300 | 400 |
钉尖朝上 的次数 | |||||
第一小组 | 23 | 39 | 79 | 121 | 160 |
第二小组 | 24 | 41 | 81 | 124 | 164 |
(1)请你估计第一小组和第二小组所得的概率分别是多少?
(2)你认为哪一个小组的结果更准确?为什么?