题目内容
【题目】已知,直线AB∥CD.
(1)如图1,若点E是AB、CD之间的一点,连接BE.DE得到∠BED.求证:∠BED=∠B+∠D.
(2)若直线MN分别与AB、CD交于点E.F.
①如图2,∠BEF和∠EFD的平分线交于点G.猜想∠G的度数,并证明你的猜想;
②如图3,EG1和EG2为∠BEF内满足∠1=∠2的两条线,分别与∠EFD的平分线交于点G1和G2.求证:∠FG1E+∠G2=180°.
【答案】(1)证明见解析;(2)①∠EGF=90°,证明见解析;②证明见解析.
【解析】
(1)过点E作EF∥AB,则有∠BEF=∠B根据平行线的性质即可得到结论;
(2)①由(1)中的结论得∠EGF=∠BEG+∠GFD,根据EG、FG分别平分∠BEF和∠EFD,得到∠BEF=2∠BEG,∠EFD=2∠GFD,由于BE∥CF到∠BEF+∠EFD=180°,于是得到2∠BEG+2∠GFD=180°,即可得到结论;
②过点G1作G1H∥AB,由结论可得∠G2=∠1+∠3,由平行线的性质得到∠3=∠G2FD,由于FG2平分∠EFD,求得∠EFG2=∠G2FD=∠3,由于∠1=∠2,于是得到∠G2=∠2+∠EFG2,由三角形外角的性质得到∠EG1G2=∠2+∠EFG2=∠G2,然后根据平角的性质即可得到结论.
(1)证明:如图1过点E作EF∥AB,则有∠BEF=∠B.
∵AB∥CD,
∴EF∥CD.
∴∠FED=∠D.
∴∠BEF+∠FED=∠B+∠D.
即∠BED=∠B+∠D;
(2)①如图2所示,猜想:∠EGF=90°.
证明:由(1)中的结论得∠EGF=∠BEG+∠GFD,
∵EG.FG分别平分∠BEF和∠EFD,
∴∠BEF=2∠BEG,∠EFD=2∠GFD,
∵BE∥CF,
∴∠BEF+∠EFD=180°,
∴2∠BEG+2∠GFD=180°,
∴∠BEG+∠GFD=90°,
∵∠EGF=∠BEG+∠GFD,
∴∠EGF=90°;
②证明:如图3,过点G1作G1H∥AB
∵AB∥CD
∴G1H∥CD
∴∠3=∠G2FD
由(1)结论可得∠G2=∠1+∠3
∵FG2平分∠EFD
∴∠EFG2=∠G2FD=∠3
∵∠1=∠2
∴∠G2=∠2+∠EFG2
∵∠EG1G2=∠2+∠EFG2
∴∠G2=∠EG1G2
∵∠FG1E+∠EG1G2=180°
∴∠FG1E+∠G2=180°.
【题目】已知关于x的一元二次方程x2﹣(m+3)x+3m=0.
(1)求证:无论m取什么实数值,该方程总有两个实数根.
(2)若该方程的两实根x1和x2是一个矩形两邻边的长且该矩形的对角线长为,求m的值.
【题目】某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:
“读书节”活动计划书 | ||
书本类别 | A类 | B类 |
进价(单位:元) | 18 | 12 |
备注 | 1.用不超过16800元购进A,B两类图书共1000本; 2.A类图书不少于600本; …… |
(1)陈经理查看计划数时发现:A类图书的标价是B类图书标价的1.5倍,若顾客用540元购买图书,能单独购买A类图书的数量恰好比单独购买B类图书的数量少10本,请求出A,B两类图书的标价;
(2)经市场调查后,陈经理发现他们高估了“读书节”对图书销售的影响,便调整了销售方案,A类图书每本标价降低a元(0<a<5)销售,B类图书价格不变,那么书店应如何进货才能获得最大利润?