题目内容
【题目】已知关于x的一元二次方程x2﹣(m+3)x+3m=0.
(1)求证:无论m取什么实数值,该方程总有两个实数根.
(2)若该方程的两实根x1和x2是一个矩形两邻边的长且该矩形的对角线长为,求m的值.
【答案】(1)详见解析;(2)m的值为1.
【解析】
(1)先求出判别式△的值,再根据“△”的意义证明即可;
(2)根据根与系数的关系得出x1+x2=m+3,x1x2=3m,根据勾股定理可知x12+x22=10,利用完全平方公式得出关于m的方程,求出方程的解即可.
证明:,
因为不论m为何值,,
所以,
所以无论m取什么实数值,该方程总有两个实数根;
解:根据根与系数的关系得:,,
该方程的两实根和是一个矩形两邻边的长且该矩形的对角线长为,
,
,
即,
解得:,舍去,
即m的值为1.
练习册系列答案
相关题目
【题目】一定数量的石子可以摆成如图所示的三角形和四边形,古希腊科学家把1,3,6,10,15,21,…,称为“三角形数”;把1,4,9,16,25,…,称为“正方形数”.
将三角形、正方形、五边形都整齐的由左到右填在所示表格里:
三角形数 | 1 | 3 | 6 | 10 | 15 | 21 | a | … |
正方形数 | 1 | 4 | 9 | 16 | 25 | b | 49 | … |
五边形数 | 1 | 5 | 12 | 22 | C | 51 | 70 | … |
(1)按照规律,表格中a=___,b=___,c=___.
(2)观察表中规律,第n个“正方形数”是________;若第n个“三角形数”是x,则用含x、n的代数式表示第n个“五边形数”是___________.