题目内容
【题目】如图所示,点A是半圆上的一个三等分点,B是劣弧的中点,点P是直径MN上的一个动点,⊙O的半径为1,则AP+PB的最小值_______.
【答案】
【解析】试题分析:首先找出点A关于MN对称的对称点A',AP+BP的最小值就是A′B的长度.
试题解析:如图,作点A关于MN的对称点A′,连接BA′交圆于P,则点P即是所求作的点,
∵A是半圆上一个三等分点,
∴∠AON=∠A′ON=360°÷2÷3=60°,
又∵点B是弧AN的中点,
∴∠BON=∠AON=×60°="30°"
∴∠A′OB=∠A′ON+∠BON=60°+30°=90°
在Rt△A′OB中,由勾股定理得:A′B2=A′O2+BO2="1+1=2"
得:A′B=,
所以:AP+BP的最小值是.
练习册系列答案
相关题目