题目内容

【题目】任意一个正整数都可以进行这样的分解: 是正整数,且),正整数的所有这种分解中,如果两因数之差的绝对值最小,我们就称是正整数的最佳分解.并规定: .例如24可以分解成1×242×123×84×6因为,所以4×624的最佳分解,所以

1)求的值;

2)如果一个两位正整数 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差记为,交换其个位上的数与十位上的数得到的新数加上原来的两位正整数所得的和记为,若4752那么我们称这个数为“最美数”,求所有“最美数”;

3)在(2)所得“最美数”中,求的最大值.

【答案】1;(2最美数4817;(3.

【解析】试题分析:

1由题意可得: 结合即可得到18的最佳分解是: 从而可得

(2)由题意易到: ,由此可得: 结合,可得,再结合都是自然数,且即可列出关于的二元一次方程组,解方程组即可求得符合条件的的值,从而可得“最美数”的值;

(3)由(2)中所得结果结合(1)中的方法即可求得的最大值.

试题分析:

(1),且

的最佳分解,

(2)由题意可知:

,即

为自然数

解得

为自然数

最美数4817

(3)当时,∵

时,∵17=1×17,

的最大值为: .

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网