题目内容

【题目】如图,将ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.
(1)求证:△ABF≌△ECF;
(2)若∠AFC=2∠D,连接AC、BE,求证:四边形ABEC是矩形.

【答案】
(1)证明:∵四边形ABCD是平行四边形,

∴AB∥DC,AB=DC,

∴∠ABF=∠ECF,

∵EC=DC,∴AB=EC,

在△ABF和△ECF中,

∵∠ABF=∠ECF,∠AFB=∠EFC,AB=EC,

∴△ABF≌△ECF(AAS)


(2)证明:∵AB=EC,AB∥EC,

∴四边形ABEC是平行四边形,

∴FA=FE,FB=FC,

∵四边形ABCD是平行四边形,

∴∠ABC=∠D,

又∵∠AFC=2∠D,

∴∠AFC=2∠ABC,

∵∠AFC=∠ABC+∠BAF,

∴∠ABC=∠BAF,

∴FA=FB,

∴FA=FE=FB=FC,

∴AE=BC,

∴四边形ABEC是矩形


【解析】(1)先由已知平行四边形ABCD得出AB∥DC,AB=DC,∠ABF=∠ECF,从而证得△ABF≌△ECF;(2)由(1)得的结论先证得四边形ABEC是平行四边形,通过角的关系得出FA=FE=FB=FC,AE=BC,得证.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网