题目内容
【题目】如图,以Rt△ABC各边为边分别向外作等边三角形,编号为①、②、③,将②、①如图所示依次叠在③上,已知四边形EMNC与四边形MPQN的面积分别为9与7,则斜边BC的长为( )
A.5B.9C.10D.16
【答案】C
【解析】
设等边三角形△EBC,△ABD,△ACF的面积分别是S3,S2,S1,AC=b,BC=a,AB=c,根据勾股定理得到c2+b2=a2,根据等式的性质得到c2+b2=a2.根据等边三角形的面积公式得到S3=a2,S2=c2,S1=b2,根据已知条件列方程即可得到结论.
解:如图,设等边三角形△EBC,△ABD,△ACF的面积分别是S3,S2,S1,AC=b,BC=a,AB=c,
∵△ABC是直角三角形,且∠BAC=90度,
∴c2+b2=a2,
∴c2+b2=a2.
∵S3=a2,S2=c2,S1=b2,
∴S3﹣S2=(a2﹣c2)=b2=9,S3﹣S1=a2﹣b2=(a2﹣b2)=c2=+=,
∴b=6,c=8,
即AB=8,AC=6,
∴BC===10,
故选:C.
练习册系列答案
相关题目