题目内容
【题目】如图,在锐角三角形ABC中,BC=4,∠ABC=60°,BD平分∠ABC,交AC于点D,M,N分别是BD,BC上的动点,则CM+MN的最小值是( )
A. B. 2C. 2D. 4
【答案】C
【解析】
在BA上截取BE=BN,构造全等三角形△BME≌△BMN,利用三角形的三边的关系确定线段和的最小值.
解:如图,在BA上截取BE=BN,
因为∠ABC的平分线交AC于点D,
所以∠EBM=∠NBM,
在△BME与△BMN中,
所以△BME≌△BMN(SAS),
所以ME=MN.
所以CM+MN=CM+ME≥CE.
因为CM+MN有最小值.
当CE是点C到直线AB的距离时,即C到直线AB的垂线段时,CE取最小值为:4×sin60°=2
故选:C.
练习册系列答案
相关题目
【题目】甲、乙两超市(大型商场)同时开业,为了吸引顾客,都举行有奖酬宾活动:凡购物满元,均可得到一次摸奖的机会.在一个纸盒里装有个红球和个白球(编号分别为红1、红、白1、白),除颜色外其它都相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少(如表)
甲超市:
球 | 两红 | --红一白 | 两白 |
礼金券(元) |
乙超市:
球 | 两红 | --红一白 | 两白 |
礼金券(元) |
(1)列举出一次摸奖时两球的所有情况;
(2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由.