题目内容

【题目】已知内接于⊙O.

(1)当点OAB有怎样的位置关系时,∠ACB是直角.

(2)在满足(1)的条件下,过点C作直线交ABD,当CDAB有什么样的关系时,△ABC∽△CBD∽△ACD.请画出符合(1)(2)题意的两个图形后再作答.

【答案】(1)点OAB上时,∠ACB是直角;(2)CDAB垂直相交于D时,△ABC∽△CBD∽△ACD.

【解析】

1)要使∠ACB是直角,根据圆周角定理可知AB为直径,故圆心OAB上;(2)要使△ABC∽△CBD∽△ACD,则需要∠ABC=ACD,则可得到CDAB.

1)如图,要使∠ACB是直角,

可知AB为直径,

故圆心OAB上;

2)如图,要使△ABC∽△CBD∽△ACD,则需要∠ABC=ACD

∠ACD+∠BCD=90°

∠B+∠BCD=90°

CDAB.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网