题目内容

【题目】如图,四边形ABCD是矩形,DG平分∠ADB交AB于点G,GF⊥BD于F.
(1)求证:△ADG≌△FDG;
(2)若BG=2AG,BD=2 ,求AD的长.

【答案】
(1)证明:∵四边形ABCD是矩形,GF⊥BD,

∴∠A=∠DFG=90°,又∠ADG=∠FDG,DG=DG,

在△ADG和△FGD中,

∴△ADG≌△FDG.


(2)解:由(1)得△ADG≌△FDG,

∴FG=AG,

∵BG=2AG,

∴BG=2FG,

∴在Rt△BFG中,sin∠FBG=

∴∠FBG=30°,

∴AD=


【解析】(1)根据AAS即可证明△ADG≌△FDG;(2)只要证明∠FBG=30°,即可推出AD= BD,由此即可解决问题;

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网