题目内容
.已知;如图,AB是⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC;③ =;④AE=BC;其中正确结论的序号是__________.
根据圆周角定理,等边对等角,等腰三角形的性质,直径对的圆周角是直角等知识,运用排除法逐条分析判断.
解:连接OD,AD,OE,
∵AB是⊙O的直径,
∴∠ADB=90°(直径所对的圆周角是直角),
∴AD⊥BC;
∵在△ABC中,AB=AC,
∴AD是边BC上的中线,
∴BD=DC,∠BAD=∠DAC,
∴劣弧DB=劣弧DE故②③正确;
∵AD是∠BAC的平分线,
由圆周角定理知,∠EBC=∠DAC=∠BAC=22.5°,故①正确;
故填:
本题利用了圆周角定理,等边对等角,等腰三角形的性质,直径对的圆周角是直角求解.
解:连接OD,AD,OE,
∵AB是⊙O的直径,
∴∠ADB=90°(直径所对的圆周角是直角),
∴AD⊥BC;
∵在△ABC中,AB=AC,
∴AD是边BC上的中线,
∴BD=DC,∠BAD=∠DAC,
∴劣弧DB=劣弧DE故②③正确;
∵AD是∠BAC的平分线,
由圆周角定理知,∠EBC=∠DAC=∠BAC=22.5°,故①正确;
故填:
本题利用了圆周角定理,等边对等角,等腰三角形的性质,直径对的圆周角是直角求解.
练习册系列答案
相关题目