题目内容
【题目】已知如图,在正方形ABCD中,AD=4,E,F分别是CD,BC上的一点,且∠EAF=45°,EC=1,将△ADE绕点A沿顺时针方向旋转90°后与△ABG重合,连接EF,过点B作BM∥AG,交AF于点M,则以下结论:①DE+BF=EF,②BF=,③AF=,④S△MEF=中正确的是
A. ①②③ B. ②③④ C. ①③④ D. ①②④
【答案】D
【解析】
利用全等三角形的性质条件勾股定理求出的长,再利用相似三角形的性质求出△BMF的面积即可
解: ∵AG=AE, ∠FAE=∠FAG=45°,AF=AF,
∴△AFE △AFG,
∴EF=FG
∵DE=BG
∴EF=FG=BG+FB=DE+BF故①正确
∵BC=CD=AD=4,EC=1
∴DE=3,设BF=x,则EF=x+3,CF=4-x,
在Rt△ECF中,(x+3)2=(4-x)2+12
解得x=
∴BF= ,AF= 故②正确,③错误,
∵BM∥AG
∴△FBM~△FGA
∴
∴S△MEF=,故④正确,
故选:D.
练习册系列答案
相关题目