题目内容
如图所示,△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.求证:BF=2CF.分析:利用辅助线,连接AF,求出CF=AF,∠BAF=90°,再根据AB=AC,∠BAC=120°可求出∠B的度数,由直角三角形的性质即可求出BF=2AF=2CF.
解答:证明:连接AF,(1分)
∵AB=AC,∠BAC=120°,
∴∠B=∠C=
=30°,(1分)
∵AC的垂直平分线EF交AC于点E,交BC于点F,
∴CF=AF(线段垂直平分线上的点到线段两端点的距离相等),
∴∠FAC=∠C=30°(等边对等角),(2分)
∴∠BAF=∠BAC-∠FAC=120°-30°=90°,(1分)
在Rt△ABF中,∠B=30°,
∴BF=2AF(在直角三角形中,30°角所对的直角边等于斜边的一半),(1分)
∴BF=2CF(等量代换).
∵AB=AC,∠BAC=120°,
∴∠B=∠C=
180°-120° |
2 |
∵AC的垂直平分线EF交AC于点E,交BC于点F,
∴CF=AF(线段垂直平分线上的点到线段两端点的距离相等),
∴∠FAC=∠C=30°(等边对等角),(2分)
∴∠BAF=∠BAC-∠FAC=120°-30°=90°,(1分)
在Rt△ABF中,∠B=30°,
∴BF=2AF(在直角三角形中,30°角所对的直角边等于斜边的一半),(1分)
∴BF=2CF(等量代换).
点评:本题考查的是线段垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等)有关知识,难度一般.
练习册系列答案
相关题目