题目内容

【题目】如图,点在抛物线上,且抛物线与轴分别交于点和点,与轴交于点

1)求抛物线的解析式.

2)若点为抛物线对称轴上的一个动点,求的最小值.

3)点为抛物线上除点外的一点,若的面积相等,求点的坐标。

【答案】(1) ;(2);(3) .

【解析】

1)将点的坐标代入求解即可.

2)找对称点,利用两点之间线段最短求解即可.

3)将几何问题转化为函数问题求解即可.

解(1)将点代入

解得

(2)如图1,作点关于对称轴的对称点,连接

的最小值为

,∴最小值为

(3)由(1)可求出

∴直线的解析式为

的面积相等

如图所示:①过交抛物线于点

∴直线的解析式为

联合

②过点,交抛物线于点

直线的解析式为

联合

解得

综上所述,满足条件的有三个,分别为:

练习册系列答案
相关题目

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网