ÌâÄ¿ÄÚÈÝ
Å×ÎïÏßy=a£¨x+6£©2-3ÓëxÖáÏཻÓÚA£¬BÁ½µã£¬ÓëyÖáÏཻÓÚC£¬DΪÅ×ÎïÏߵĶ¥µã£¬Ö±ÏßDE¡ÍxÖᣬ´¹×ãΪE£¬AE2=3DE£®
£¨1£©ÇóÕâ¸öÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©PΪֱÏßDEÉϵÄÒ»¶¯µã£¬ÒÔPCΪб±ß¹¹ÔìÖ±½ÇÈý½ÇÐΣ¬Ê¹Ö±½Ç¶¥µãÂäÔÚxÖáÉÏ£®ÈôÔÚxÖáÉϵÄÖ±½Ç¶¥µãÖ»ÓÐÒ»¸öʱ£¬ÇóµãPµÄ×ø±ê£»
£¨3£©MΪÅ×ÎïÏßÉϵÄÒ»¶¯µã£¬¹ýM×÷Ö±ÏßMN¡ÍDM£¬½»Ö±ÏßDEÓÚN£¬µ±MµãÔÚÅ×ÎïÏߵĵڶþÏóÏ޵IJ¿·ÖÉÏÔ˶¯Ê±£¬ÊÇ·ñ´æÔÚʹµãEÈýµÈ·ÖÏ߶ÎDNµÄÇé¿ö£¿Èô´æÔÚ£¬ÇëÇó³öËùÓзûºÏÌõ¼þµÄMµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨1£©ÇóÕâ¸öÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©PΪֱÏßDEÉϵÄÒ»¶¯µã£¬ÒÔPCΪб±ß¹¹ÔìÖ±½ÇÈý½ÇÐΣ¬Ê¹Ö±½Ç¶¥µãÂäÔÚxÖáÉÏ£®ÈôÔÚxÖáÉϵÄÖ±½Ç¶¥µãÖ»ÓÐÒ»¸öʱ£¬ÇóµãPµÄ×ø±ê£»
£¨3£©MΪÅ×ÎïÏßÉϵÄÒ»¶¯µã£¬¹ýM×÷Ö±ÏßMN¡ÍDM£¬½»Ö±ÏßDEÓÚN£¬µ±MµãÔÚÅ×ÎïÏߵĵڶþÏóÏ޵IJ¿·ÖÉÏÔ˶¯Ê±£¬ÊÇ·ñ´æÔÚʹµãEÈýµÈ·ÖÏ߶ÎDNµÄÇé¿ö£¿Èô´æÔÚ£¬ÇëÇó³öËùÓзûºÏÌõ¼þµÄMµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨1£©Ò×ÖªÅ×ÎïÏߵĶ¥µãD£¨-6£¬-3£©£¬ÔòDE=3£¬OE=6£»
¡ßAE2=3DE=9£¬
¡àAE=3£¬¼´A£¨-3£¬0£©£»
½«Aµã×ø±ê´úÈëÅ×ÎïÏߵĽâÎöʽÖУ¬
µÃ£ºa£¨-3+6£©2-3=0£¬
¼´a=
£¬
¼´Å×ÎïÏߵĽâÎöʽΪ£ºy=
£¨x+6£©2-3=
x2+4x+9£®
£¨2£©ÉèµãP£¨-6£¬t£©£¬Ò×ÖªC£¨0£¬9£©£»
ÔòPCµÄÖеãQ£¨-3£¬
£©£»
Ò×Öª£ºPC=
£»
ÈôÒÔPCΪб±ß¹¹ÔìÖ±½ÇÈý½ÇÐΣ¬ÔÚxÖáÉϵÄÖ±½Ç¶¥µãÖ»ÓÐÒ»¸öʱ£¬ÒÔPCΪֱ¾¶µÄÔ²ÓëxÖáÏàÇУ¬¼´£º
|
|=
£¬
½âµÃt=1£¬
¹ÊµãP£¨-6£¬1£©£¬
µ±µãPÓëµãEÖغÏʱ£¬ÓÉÅ×ÎïÏߵĽâÎöʽ¿ÉÖª£¬A£¨-3£¬0£©£¬B£¨-9£¬0£©£®
ËùÒÔP£¨-6£¬0£©£¬
¹ÊµãPµÄ×ø±êΪ£¨-6£¬1£©»ò£¨-6£¬0£©£¬
£¨3£©ÉèµãM£¨a£¬b£©£¨a£¼0£¬b£¾0£©£¬·ÖÁ½ÖÖÇé¿öÌÖÂÛ£º
¢Ùµ±NE=2DEʱ£¬NE=6£¬¼´N£¨-6£¬6£©£¬ÒÑÖªD£¨-6£¬-3£©£¬ÔòÓУº
Ö±ÏßMNµÄбÂÊ£ºk1=
£¬Ö±ÏßMDµÄбÂÊ£ºk2=
£»
ÓÉÓÚMN¡ÍDM£¬Ôòk1•k2=
=-1£¬
ÕûÀíµÃ£ºa2+b2+12a-3b+18=0¡£¨¡÷£©£¬
ÓÉÅ×ÎïÏߵĽâÎöʽµÃ£º
a2+4a+9=b£¬
ÕûÀíµÃ£ºa2+12a-3b+27=0¡£¨¡õ£©£»
£¨¡÷£©-£¨¡õ£©µÃ£ºb2=9£¬¼´b=3£¨¸ºÖµÉáÈ¥£©£¬
½«b=3´úÈ루¡õ£©µÃ£ºa=-6+3
£¬a=-6-3
£¬
¹ÊµãM£¨-6+3
£¬3£©»ò£¨-6-3
£¬3£©£»
¢Úµ±2NE=DEʱ£¬NE=
£¬¼´N£¨-6£¬
£©£¬ÒÑÖªD£¨-6£¬-3£©£¬
ÔòÓУºÖ±ÏßMNµÄбÂÊ£ºk1=
£¬Ö±ÏßDMµÄбÂÊ£ºk2=
£»
ÓÉÌâÒâµÃ£ºk1•k2=
=-1£¬
ÕûÀíµÃ£ºa2+b2+
b+12a+
=0£¬
¶øa2+12a-3b+27=0£»Á½Ê½Ïà¼õ£¬
µÃ£º2b2+9b+9=0£¬
½âµÃb=-2£¬b=-
£¬£¨¾ù²»·ûºÏÌâÒ⣬ÉáÈ¥£©£»
×ÛÉÏ¿ÉÖª£º´æÔÚ·ûºÏÌõ¼þµÄMµã£¬ÇÒ×ø±êΪ£ºM£¨-6+3
£¬3£©»ò£¨-6-3
£¬3£©£®
¡ßAE2=3DE=9£¬
¡àAE=3£¬¼´A£¨-3£¬0£©£»
½«Aµã×ø±ê´úÈëÅ×ÎïÏߵĽâÎöʽÖУ¬
µÃ£ºa£¨-3+6£©2-3=0£¬
¼´a=
1 |
3 |
¼´Å×ÎïÏߵĽâÎöʽΪ£ºy=
1 |
3 |
1 |
3 |
£¨2£©ÉèµãP£¨-6£¬t£©£¬Ò×ÖªC£¨0£¬9£©£»
ÔòPCµÄÖеãQ£¨-3£¬
9+t |
2 |
Ò×Öª£ºPC=
36+(9-t)2 |
ÈôÒÔPCΪб±ß¹¹ÔìÖ±½ÇÈý½ÇÐΣ¬ÔÚxÖáÉϵÄÖ±½Ç¶¥µãÖ»ÓÐÒ»¸öʱ£¬ÒÔPCΪֱ¾¶µÄÔ²ÓëxÖáÏàÇУ¬¼´£º
|
9+t |
2 |
1 |
2 |
36+(9-t)2 |
½âµÃt=1£¬
¹ÊµãP£¨-6£¬1£©£¬
µ±µãPÓëµãEÖغÏʱ£¬ÓÉÅ×ÎïÏߵĽâÎöʽ¿ÉÖª£¬A£¨-3£¬0£©£¬B£¨-9£¬0£©£®
ËùÒÔP£¨-6£¬0£©£¬
¹ÊµãPµÄ×ø±êΪ£¨-6£¬1£©»ò£¨-6£¬0£©£¬
£¨3£©ÉèµãM£¨a£¬b£©£¨a£¼0£¬b£¾0£©£¬·ÖÁ½ÖÖÇé¿öÌÖÂÛ£º
¢Ùµ±NE=2DEʱ£¬NE=6£¬¼´N£¨-6£¬6£©£¬ÒÑÖªD£¨-6£¬-3£©£¬ÔòÓУº
Ö±ÏßMNµÄбÂÊ£ºk1=
b-6 |
a+6 |
b+3 |
a+6 |
ÓÉÓÚMN¡ÍDM£¬Ôòk1•k2=
(b-6)(b+3) |
(a+6)2 |
ÕûÀíµÃ£ºa2+b2+12a-3b+18=0¡£¨¡÷£©£¬
ÓÉÅ×ÎïÏߵĽâÎöʽµÃ£º
1 |
3 |
ÕûÀíµÃ£ºa2+12a-3b+27=0¡£¨¡õ£©£»
£¨¡÷£©-£¨¡õ£©µÃ£ºb2=9£¬¼´b=3£¨¸ºÖµÉáÈ¥£©£¬
½«b=3´úÈ루¡õ£©µÃ£ºa=-6+3
2 |
2 |
¹ÊµãM£¨-6+3
2 |
2 |
¢Úµ±2NE=DEʱ£¬NE=
3 |
2 |
3 |
2 |
ÔòÓУºÖ±ÏßMNµÄбÂÊ£ºk1=
b-
| ||
a+6 |
b+3 |
a+6 |
ÓÉÌâÒâµÃ£ºk1•k2=
(b-
| ||
(a+6)2 |
ÕûÀíµÃ£ºa2+b2+
3 |
2 |
63 |
2 |
¶øa2+12a-3b+27=0£»Á½Ê½Ïà¼õ£¬
µÃ£º2b2+9b+9=0£¬
½âµÃb=-2£¬b=-
3 |
2 |
×ÛÉÏ¿ÉÖª£º´æÔÚ·ûºÏÌõ¼þµÄMµã£¬ÇÒ×ø±êΪ£ºM£¨-6+3
2 |
2 |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿