题目内容

【题目】如图,点P在射线AB的上方,且∠PAB=45°,PA=2,点M是射线AB上的动点(点M不与点A重合),现将点P绕点A按顺时针方向旋转60°,到点Q,将点M绕点P按逆时针方向旋转60°到点N,连结AQ,PM,PN,作直线QN.
(1)求证:AM=QN;
(2)直线QN与以点P为圆心,以PN的长为半径的圆是否存在相切的情况?若存在,请求出此时AM的长,若不存在,请说明理由;
(3)当以点P为圆心,以PN的长为半径的圆经过点Q时,直接写出劣弧NQ与两条半径所围成的扇形的面积.

【答案】
(1)证明:如图1,连接PQ,

由点P绕点A按顺时针方向旋转60°到点Q,

可得,AP=AQ,∠PAQ=60°,

∴△APQ为等边三角形,

∴PA=PQ,∠APQ=60°,

由点M绕点P按逆时针方向旋转60°到点N,

可得,PM=PN,∠MPN=60°,

∴∠APM=∠QPN,

则△APM≌△QPN(SAS),

∴AM=QN


(2)解:存在.

如图2,

由(1)中的证明可知,△APM≌△QPN,

∴∠AMP=∠QNP,

∵直线QN与以点P为圆心,以PN的长为半径的圆相切,

∴∠AMP=∠QNP=90°,

即:PN⊥QN,

在R△APM中,∠PAB=45°,PA=2,

∴AM=


(3)解:如图3,

由(1)知,△APQ是等边三角形,

∴PA=PQ,∠APQ=60°,

∵以点P为圆心,以PN的长为半径的圆经过点Q,

∴PN=PQ=PA,

∵PM=PN,

∴PA=PM,

∵∠PAB=45°,

∴∠APM=90°,

∴∠MPQ=∠APM﹣∠APQ=30°,

∵∠MPN=60°,

∴∠QPN=90°,

∴劣弧NQ与两条半径所围成的扇形的面积是扇形QPN的面积,而此扇形的圆心角∠QPN=90°,半径为PN=PM=PA=2,

∴劣弧NQ与两条半径所围成的扇形的面积= =π.


【解析】(1)根据旋转的旋转判断出△APQ为等边三角形,再判断出∠APM=∠QPN,从而得出△APM≌△QPN即可;(2)由直线和圆相切得出∠AMP=∠QNP=90°,再用勾股定理即可求出结论;(3)先判断出PA=PQ,再判断出PQ=PN=PM,进而求出∠QPM=30°,即可求出∠QPN=90°,最后用扇形的面积公式即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网