题目内容
【题目】某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:
经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.
(1)该企业有几种购买方案?
(2)哪种方案更省钱,说明理由.
【答案】(1)有2种购买方案:第一种是购买3台A型污水处理设备,5台B型污水处理设备;第二种是购买4台A型污水处理设备,4台B型污水处理设备;
(2) 购买3台A型污水处理设备,5台B型污水处理设备更省钱. 理由见解析.
【解析】
设该企业购进A型设备x台,则购进B型设备台,根据企业最多支出89万元购买设备且要求月处理污水能力不低于1380吨,即可得出关于x的一元一次不等式组,解之取其整数值即可得出结论;
(2)直接计算x=3和x=.5时的总价,进行比较即可.
解:设购买污水处理设备A型号x台,则购买B型号(8-x)台,
根据题意,得
解这个不等式组,得:2.5≤x≤4.5.
∵x是整数
∴x=3或x=4.
当x=3时,8-x=5;当x=4时,8-x=4.
答:有2种购买方案:第一种是购买3台A型污水处理设备,5台B型污水处理设备;第二种是购买4台A型污水处理设备,4台B型污水处理设备;
(2)当x=3时,购买资金为12×3+10×5=86(万元),
当x=4时,购买资金为12×4+10×4=88(万元).
因为88>86,
所以为了节约资金,应购污水处理设备A型号3台,B型号5台.
答:购买3台A型污水处理设备,5台B型污水处理设备更省钱.
【题目】某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如下表所示:
A | B | |
进价(万元/套) | 1.5 | 1.2 |
售价(万元/套) | 1.65 | 1.4 |
该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元。
(毛利润=(售价 - 进价)×销售量)
(1)该商场计划购进A,B两种品牌的教学设备各多少套?
(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少数量的1.5倍。若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?