题目内容
【题目】如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O逆时针旋转,每次旋转90°,则第2019次旋转结束时,点D的坐标为( )
A.(3,﹣10)B.(10,3)C.(﹣10,﹣3)D.(10,﹣3)
【答案】C
【解析】
先求出AB=6,再利用正方形的性质确定D(-3,10),由于2019=4×504+3,所以旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转3次,由此求出点D坐标即可.
∵A(﹣3,4),B(3,4),
∴AB=3+3=6.
∵四边形ABCD为正方形,
∴AD=AB=6,
∴D(﹣3,10).
∵2019=4×504+3,
∴每4次一个循环,第2019次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转3次,每次旋转,刚好旋转到如图O的位置.
∴点D的坐标为(﹣10,﹣3).
故选:C.
练习册系列答案
相关题目
【题目】某数学兴趣小组根据学习函数的经验,对分段函数的图象与性质进行了探究,请补充完整以下的探究过程.
x | … | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | 3 | 0 | -1 | 0 | 1 | 0 | -3 | … |
(1)填空:a= .b= .
(2)①根据上述表格数据补全函数图象;
②该函数图象是轴对称图形还是中心对称图形?
(3)若直线与该函数图象有三个交点,求t的取值范围.