题目内容
如图,在平行四边形ABCD中,AE:EB=1:2,S△AEF=3,则S△FCD=
27
27
.分析:先根据AE:EB=1:2得出AE:CD=1:3,再由相似三角形的判定定理得出△AEF∽△CDF,由相似三角形的性质即可得出结论.
解答:解:∵四边形ABCD是平行四边形,AE:EB=1:2,
∴AE:CD=1:3,
∵AB∥CD,
∴∠EAF=∠DCF,
∵∠DFC=∠AFE,
∴△AEF∽△CDF,
∵S△AEF=3,
∴
=
=(
)2,
解得S△FCD=27.
故答案为:27.
∴AE:CD=1:3,
∵AB∥CD,
∴∠EAF=∠DCF,
∵∠DFC=∠AFE,
∴△AEF∽△CDF,
∵S△AEF=3,
∴
S△AEF |
SFCD |
3 |
SFCD |
1 |
3 |
解得S△FCD=27.
故答案为:27.
点评:本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.
练习册系列答案
相关题目
如图,在平行四边形ABCD中,AB=2
,AO=
,OB=
,则下列结论中不正确的是( )
2 |
3 |
5 |
A、AC⊥BD |
B、四边形ABCD是菱形 |
C、△ABO≌△CBO |
D、AC=BD |