题目内容
【题目】利用“同角的余角相等”可以帮助我们得到相等的角,这个规律在全等三角形的判定中有着广泛的运用.
(1)如图①,,,三点共线,于点,于点,,且.若,求的长.
(2)如图②,在平面直角坐标系中,为等腰直角三角形,直角顶点的坐标为,点的坐标为.求直线与轴的交点坐标.
(3)如图③,,平分,若点坐标为,点坐标为.则 .(只需写出结果,用含,的式子表示)
【答案】(1)6;(2)(0,2);(3)
【解析】
(1)利用AAS证出△ABC≌△CDE,根据全等三角形的性质可得AB=CD,BC=DE,再根据BD=CD+BC等量代换即可求出BD;
(2)过点A作AD⊥x轴于D,过点B作BE⊥x轴于E,利用AAS证出△ADC≌△CEB,根据全等三角形的性质可得AD=CE,CD=BE,根据点A和点C的坐标即可求出点B的坐标,然后利用待定系数法求出直线AB的解析式,即可求出直线AB与y轴的交点坐标;
(3)过点C作CD⊥y轴于D,CE⊥x轴于E,根据正方形的判定可得四边形OECD是正方形,然后利用ASA证出△DCA≌△ECB,从而得出DA=EB,S△DCA=S△ECB,然后利用正方形的边长相等即可求出a、b表示出DA和正方形的边长OD,然后根据即可推出=,最后求正方形的面积即可.
解:(1)∵,,
∴∠ABC=∠CDE=∠ACE=90°
∴∠A+∠ACB=90°,∠ECD+∠ACB=180°-∠ACE=90°
∴∠A=∠ECD
在△ABC和△CDE中
∴△ABC≌△CDE
∴AB=CD,BC=DE
∴BD=CD+BC=
(2)过点A作AD⊥x轴于D,过点B作BE⊥x轴于E
∵△ABC为等腰直角三角形
∴∠ADC=∠CEB=∠ACB=90°,AC=CB
∴∠DAC+∠ACD=90°,∠ECB+∠ACD=180°-∠ACB=90°
∴∠DAC =∠ECB
在△ADC和△CEB中
∴△ADC≌△CEB
∴AD=CE,CD=BE
∵点的坐标为,点的坐标为
∴CO=1,AD=1,DO=2,
∴OE=OC+CE= OC+AD=2,BE=CD=CO+DO=3,
∴点B的坐标为(2,3)
设直线AB的解析式为y=kx+b
将A、B两点的坐标代入,得
解得:
∴直线AB的解析式为
当x=0时,解得y=2
∴直线与轴的交点坐标为(0,2);
(3)过点C作CD⊥y轴于D,CE⊥x轴于E
∵OC平分∠AOB
∴CD=CE
∴四边形OECD是正方形
∴∠DCE=90°,OD=OE
∵∠ACB=90°
∴∠DCA+∠ACE=∠ECB+∠ACE=90°
∴∠DCA=∠ECB
在△DCA和△ECB中
∴△DCA≌△ECB
∴DA=EB,S△DCA=S△ECB
∵点坐标为,点坐标为
∴OB=b,OA=a
∵OD=OE
∴OA+DA=OB-BE
即a+DA=b-DA
∴DA=
∴OD= OA+DA=
=
=
= DA2
=
=
故答案为:.