题目内容

已知⊙O中,
AC
=
CE

(1)如图1,求证:CO⊥AE;
(2)如图2,CD⊥直径AB于D,若BD=1,AE=4,求⊙O的半径.
(1)证明:延长CO交AE于点D,
AC
=
CE
,CD过圆心,
∴CO⊥AE;

(2)设⊙O的半径为r,连接CO并延长交AE于点F,
AC
=
CE
,CD过圆心,AE=4,
∴OF⊥AE,
∴AF=
1
2
AE=
1
2
×4=2,
∵CD⊥AB,∠AOF=∠COD,
∴在△OAF与△OCD中,
∠FAO=∠OCD
OA=OC
∠AOF=∠COD

∴△OAF≌△OCD,
∴OF=OD=r-1,
∴在Rt△AOF中,OA2=AF2+OF2,即r2=22+(r-1)2,解得r=
5
2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网