题目内容

【题目】如图,在RtABC中,AB=AC,D,E是斜边上BC上两点,且DAE=45°,将ADC绕点A顺时针旋转90°后,得到AFB,连接EF,下列结论:

BFBC;②△AED≌△AEF;BE+DC=DE;BE2+DC2=DE2

其中正确的个数是(

A.1 B.2 C.3 D.4

【答案】C.

【解析】

试题分析:∵△ADC绕点A顺时针旋转90°后,得到AFB,∴△ADC≌△AFB,BF=DC,FBA=CBAF=CAD,又∵∠ABC+C=90°,∴∠ABC+FBA=90°,即FBC=90°,BFBC,故正确;

∵∠BAC=90°,DAE=45°,∴∠BAE+CAD=DAE=45°,∴∠BAE+BAF=DAE=45°,即EAF=EAD,在AED和AEF中,AF=AD,EAF=EAD,AE=AE∴△AED≌△AEF,故正确;

BF=DC,BE+DC=BE+BF,∵△AED≌△AEF,EF=DE,在BEF中,BE+BFEF,BE+DCDE,故错误

∵∠FBC=90°,BE2+BF2=EF2BF=DC、EF=DE,BE2+DC2=DE2正确;故选C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网