题目内容
【题目】如图,在Rt△ABC中,AB=AC,D,E是斜边上BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:
①BF⊥BC;②△AED≌△AEF;③BE+DC=DE;④BE2+DC2=DE2
其中正确的个数是( )
A.1 B.2 C.3 D.4
【答案】C.
【解析】
试题分析:∵△ADC绕点A顺时针旋转90°后,得到△AFB,∴△ADC≌△AFB,∴BF=DC,∠FBA=∠C∠BAF=∠CAD,又∵∠ABC+∠C=90°,∴∠ABC+∠FBA=90°,即∠FBC=90°,∴BF⊥BC,故①正确;
∵∠BAC=90°,∠DAE=45°,∴∠BAE+∠CAD=∠DAE=45°,∴∠BAE+∠BAF=∠DAE=45°,即∠EAF=∠EAD,在△AED和△AEF中,AF=AD,∠EAF=∠EAD,AE=AE,∴△AED≌△AEF,故②正确;
∵BF=DC,∴BE+DC=BE+BF,∵△AED≌△AEF,∴EF=DE,在△BEF中,∵BE+BF>EF,∴BE+DC>DE,故③错误;
∵∠FBC=90°,∴BE2+BF2=EF2,∵BF=DC、EF=DE,∴BE2+DC2=DE2,④正确;故选C.
练习册系列答案
相关题目