题目内容
【题目】如图,△AOB,△COD是等腰直角三角形,点D在AB上,
(1)求证:△AOC≌△BOD;
(2)若AD=3,BD=1,求CD.
【答案】(1)见解析;(2)
【解析】试题分析:(1)因为∠AOB=∠COD=90°,由等量代换可得∠DOB=∠AOC,又因为△AOB和△COD均为等腰直角三角形,所以OC=OD,OA=OB,则△AOC≌△BOD;
(2)由(1)可知△AOC≌△BOD,所以AC=BD=1,∠CAO=∠DBO=45°,由等量代换求得∠CAB=90°,根据勾股定理即可求出CD的长.
试题解析:(1)∵△AOB,△COD是等腰直角三角形,
∴OC=OD,OA=OB,∠AOB=∠COD=90°,
∴∠AOC=∠BOD=90°﹣∠AOD,
在△AOC和△BOD中,
∴△AOC≌△BOD(SAS);
(2)∵△AOB,△COD是等腰直角三角形,
∴OC=OD,OA=OB,∠AOB=∠COD=90°,
∴∠B=∠OAB=45°,
∵△AOC≌△BOD,BD=1,
∴AC=BD=1,∠CAO=∠B=45°,
∵∠OAB=45°,
∴∠CAD=45°+45°=90°,
在Rt△CAD中,由勾股定理得:CD=.
练习册系列答案
相关题目
【题目】某商店能过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数关系,如下表:
第1个 | 第2个 | 第3个 | 第4个 | … | 第n个 | |
调整前单价x(元) | x1 | x2=6 | x3=72 | x4 | … | xn |
调整后单价x(元) | y1 | y2=4 | y3=59 | y4 | … | yn |
已知这n个玩具调整后的单价都大于2元.
(1)求y与x的函数关系式,并确定x的取值范围;
(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?
(3)这n个玩具调整前、后的平均单价分别为,,猜想与的关系式,并写出推导出过.