题目内容
【题目】如图,在四边形ABCD中,AD∥BC,∠BCD=90°,将四边形ABCD沿AB方向平移得到四边形A'B'C'D',BC与C'D'相交于点E,若BC=8,CE=3,C'E=2,则阴影部分的面积为( )
A.12+2B.13C.2+6D.26
【答案】B
【解析】
利用平移的性质得到B′C′=BC=8,BC∥B′C′,CD∥C′D′,S梯形ABCD=S梯形A′B′C′D′,然后根据S阴影部分=S梯形BB′C′E进行计算.
解:∵四边形ABCD沿AB方向平移得到四边形A'B'C'D',
∴B′C′=BC=8,BC∥B′C′,CD∥C′D′,S梯形ABCD=S梯形A′B′C′D′,
∴C′D′⊥BE,
∴S阴影部分=S梯形BB′C′E=(8﹣3+8)×2=13.
故选:B.
练习册系列答案
相关题目