题目内容
【题目】如图,正方形ABCD的边长为3,对角线AC、BD相交于点O,将AC向两个方向延长,分别至点E和点F,且AE=CF=3,则四边形BEDF的周长为( )
A. 20B. 24C. 12D. 12
【答案】D
【解析】
根据正方形的性质,可知其对角线互相平分且垂直;由正方形的边长,可求得其对角线长;再由已知AE=CF=3,可得OE=OF,从而四边形为菱形;由勾股定理求得该菱形的一条边,再乘以4即可求得四边形BEDF的周长.
∵四边形ABCD为正方形
∴AC⊥BD
∵正方形ABCD的边长为3,
∴AC=BD==6
∴OA=OB=OC=OD=3
∵AE=CF=3
∴OE=OF=6
∴四边形BEDF为菱形
∴BE=
则四边形BEDF的周长为4×3.
故选D.
练习册系列答案
相关题目
【题目】为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
组别 | 成绩x分 | 频数(人数) |
第1组 | 25≤x<30 | 4 |
第2组 | 30≤x<35 | 8 |
第3组 | 35≤x<40 | 16 |
第4组 | 40≤x<45 | a |
第5组 | 45≤x<50 | 10 |
请结合图表完成下列各题:
(1)求表中a的值;
(2)请把频数分布直方图补充完整;
(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?
(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.