题目内容
如图,OB平分∠CBA,CO平分∠ACB,且MN∥BC,设AB=12,BC=24,AC=18,则△AMN的周长为
- A.30
- B.33
- C.36
- D.39
A
分析:根据BO平分∠CBA,CO平分∠ACB,且MN∥BC,可得出MO=MC,NO=NB,所以三角形AMN的周长是AB+AC.
解答:∵BO平分∠CBA,CO平分∠ACB,
∴∠NBO=∠OBC,∠OCM=∠OCB,
∵MN∥BC,
∴∠NOB=∠OBC,∠MOC=∠OCB,
∴∠NBO=∠NOB,∠MOC=∠MCO,
∴MO=MC,NO=NB,
∵AB=12,AC=18,
∴△AMN的周长=AM+MN+AN=AB+AC=12+18=30.
故选A.
点评:本题主要考查学生对考查了等腰三角形的判定和性质以及平行线的性质等知识点的理解和掌握,难度不大,是基础知识要熟练掌握.
分析:根据BO平分∠CBA,CO平分∠ACB,且MN∥BC,可得出MO=MC,NO=NB,所以三角形AMN的周长是AB+AC.
解答:∵BO平分∠CBA,CO平分∠ACB,
∴∠NBO=∠OBC,∠OCM=∠OCB,
∵MN∥BC,
∴∠NOB=∠OBC,∠MOC=∠OCB,
∴∠NBO=∠NOB,∠MOC=∠MCO,
∴MO=MC,NO=NB,
∵AB=12,AC=18,
∴△AMN的周长=AM+MN+AN=AB+AC=12+18=30.
故选A.
点评:本题主要考查学生对考查了等腰三角形的判定和性质以及平行线的性质等知识点的理解和掌握,难度不大,是基础知识要熟练掌握.
练习册系列答案
相关题目