题目内容

感受理解
如图①,△ABC是等边三角形,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F,则线段FE与FD之间的数量关系是
EF=FD
EF=FD

自主学习
事实上,在解决几何线段相等问题中,当条件中遇到角平分线时,经常采用下面构造全等三角形的解决思路
如:在图②中,若C是∠MON的平分线OP上一点,点A在OM上,此时,在ON上截取OB=OA,连接BC,根据三角形全等判定(SAS),容易构造出全等三角形△OBC和△OAC,从而得到线段CA与CB相等
学以致用
参考上述学到的知识,解答下列问题:
如图③,△ABC不是等边三角形,但∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.求证:FE=FD.
分析:感受理解:首先利用等边三角形的内角相等和角平分线的性质得到∠DAC=∠ECA,利用等角对等边得到FA=FC,然后证明三角形EFA全等于三角形DFC即可证得结论;
学以致用:在AC上截取AG=AE,连接FG,根据“边角边”证明△AEF和△AGF全等,根据全等三角形对应角相等可得∠AFE=∠AFG,全等三角形对应边相等可得FE=FG,再根据角平分线的定义以及三角形的内角和定理推出∠2+∠3=60°,从而得到∠AFE=∠CFD=∠AFG=60°,然后根据平角等于180°推出∠CFG=60°,然后利用“角边角”证明△CFG和△CFD全等,根据全等三角形对应边相等可得FG=FD,从而得证.
解答:感受理解:
解:EF=FD.理由如下:
∵△ABC是等边三角形,
∴∠BAC=∠BCA,
∵AD、CE分别是∠BAC、∠BCA的平分线,
∴∠DAC=∠ECA,∠BAD=∠BCE,
∴FA=FC.
∴在△EFA和△DFC中,
∠EFA=∠DFC
AF=CF
∠BAD=∠BCE

∴△EFA≌△DFC,
∴EF=FD;

学以致用:
证明:如图1,在AC上截取AG=AE,连接FG.
∵AD是∠BAC的平分线,
∴∠1=∠2,
在△AEF和△AGF中,
AG=AE
∠1=∠2
AF=AF

∴△AEF≌△AGF(SAS),
∴∠AFE=∠AFG,FE=FG,
∵∠B=60°,
∴∠BAC+∠ACB=180°-60°=120°,
∵AD、CE分别是∠BAC、∠BCA的平分线,
∴∠2=
1
2
∠BAC,∠3=
1
2
∠ACB,
∴∠2+∠3=
1
2
(∠BAC+∠ACB)=
1
2
×120°=60°,
∴∠AFE=∠CFD=∠AFG=60°.
∴∠CFG=180°-∠AFG-∠CFD=180°-60°-60°=60°,
∴∠CFG=∠CFD,
∵CE是∠BCA的平分线,
∴∠3=∠4,
在△CFG和△CFD中,
∠CFG=∠CFD
FC=FC
∠3=∠4

∴△CFG≌△CFD(ASA),
∴FG=FD,
∴FE=FD.
点评:本题考查了全等三角形的判定与性质,角平分线的定义,三角形的内角和定理,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,根据所求角度正好等于60°得到角相等是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网