题目内容
【题目】若a、b、c是△ABC中∠A、∠B、∠C的对边,抛物线y=x2﹣2ax+b2交x轴于M(a+c,0),则△ABC是( )
A. 等腰三角形 B. 等边三角形 C. 直角三角形 D. 不确定
【答案】C
【解析】
抛物线y=x2-2ax+b2与x轴于M(a+c,0),把y=0代入抛物先的解析式,利用求根公式求出x的值即可求出a、b、c的关系式,进而可判断出三角形的形状.
∵抛物线y=x2-2ax+b2交x轴于M(a+c,0),
∴当y=0时,x=a+c,
把y=0代入抛物线y=x2-2ax+b2交得,抛物线0=x2-2ax+b2,
解得,x=,
∵a、b、c是△ABC中∠A、∠B、∠C的对边,
∴a>0,b>0,c>0,
∴a+=a+c,即=c,
解得a2-b2=c2,即a2+c2=b2,故此三角形为直角三角形.
故选C.
练习册系列答案
相关题目