题目内容
【题目】四边形具有不稳定性,如图,在平面直角坐标系中,矩形的边在轴上,且点,边长为.现固定边,向右推动矩形使点落在轴上(落点记为),点的对应点记为,已知矩形与推动后形成的平行四边形的面积比为,则点坐标为_______.
【答案】(7,4)
【解析】
根据面积比可求出OD′的长,利用勾股定理可求出OA的长,根据点B坐标可得OB的长,即可求出AB的长,根据平行四边形的性质可得C′D′=AB,即可得答案.
∵固定边,向右推动矩形使点落在轴上,AD=5,
∴AD′=AD=5,
∵矩形与推动后形成的平行四边形的面积比为,
∴,
∴OD′=4,
∴OA==3,
∵点B坐标为(4,0),
∴OB=4,
∴AB=OB+OA=7,
∴C′D′=AB=7,
∴点C′的坐标为(7,4)
故答案为:(7,4)
【题目】如图,在矩形中,是延长线上的定点,为边上的一个动点,连接,将射线绕点顺时针旋转,交射线于点,连接.
小东根据学习函数的经验,对线段的长度之间的关系进行了探究.
下面是小东探究的过程,请补充完整:
(1)对于点在上的不同位置,画图、测量,得到了线段的长度的几组值,如下表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置7 | 位置8 | 位置9 | |
0.00 | 0.53 | 1.00 | 1.69 | 2.17 | 2.96 | 3.46 | 3.79 | 4.00 | |
0.00 | 1.00 | 1.74 | 2.49 | 2.69 | 2.21 | 1.14 | 0.00 | 1.00 | |
4.12 | 3.61 | 3.16 | 2.52 | 2.09 | 1.44 | 1.14 | 1.02 | 1.00 |
在的长度这三个量中,确定_____的长度是自变量,_____的长度和_____的长度都是这个自变量的函数;
(2)在同一平面直角坐标系中,画出(1)中所确定的两个函数的图象;
(3)结合画出的函数图象,解决问题:当时,的长度约为________.
【题目】数学活动课上,小明同学根据学习函数的经验,对函数的图像、性质进行了探究,下面是小明同学探究过程,请补充完整:
如图1,已知在,,,,点为边上的一个动点,连接.设,.
(初步感知)
(1)当时,则①________,②________;
(深入思考)
(2)试求与之间的函数关系式并写出自变量的取值范围;
(3)通过取点测量,得到了与的几组值,如下表:
0 | 0.5 | 1 | 1.5 | 2. | 2.5 | 3 | 3.5 | 4 | |
2 | 1.8 | 1.7 | _____ | 2 | 2.3 | 2.6 | 3.0 | _____ |
(说明:补全表格时相关数值保留一位小数)
1)建立平面直角坐标系,如图2,描出已补全后的表中各对应值为坐标的点,画出该函数的图象;
2)结合画出的函数图象,写出该函数的两条性质:
①________________________________;②________________________________.