题目内容
【题目】如图,在中,于点,过点作与边相切于点,交于点为的直径.
(1)求证:;
(2)若,求的长.
【答案】(1)证明见解析;(2)
【解析】
(1)根据圆的切线的性质得出CE⊥AB,然后进一步利用AB=AC和AD⊥BC证明得BD=DC,从而根据三角形中位线性质得知OD∥EB,由此即可证明结论;
(2)连接EF,首先根据题意得出∠BEF+∠FEC=∠FEC+∠ECF=90°,由此求出∠ECF=∠BEF,再者利用三角函数得出,从而求出EF,再利用勾股定理求得BE,最后利用平行线分线段成比例的性质进一步求解即可.
(1)∵与边AB相切于点E,且CE为的直径,
∴CE⊥AB,OE=OC,
∵AB=AC,AD⊥BC,
∴BD=DC,
又∵OE=OC,
∴OD是△BCE的中位线,
∴OD∥EB,
∴OD⊥CE;
(2)如图,连接EF,
∵CE为的直径,且点F在上,
∴∠EFC=90°,
∵CE⊥AB,
∴∠BEC=90°,
∴∠BEF+∠FEC=∠FEC+∠ECF=90°,
∴∠ECF=∠BEF,
∴tan∠BEF=tan∠ECF,
∴,
又∵DF=1,BD=DC=3,
∴BF=2,FC=4,
∴,
∴EF=,
∵∠EFC=90°,
∴∠BFE=90°,
由勾股定理可得:BE=,
∵AD⊥BC且∠EFC=90°,
∴EF∥AD,
∴,
∴AE=.
练习册系列答案
相关题目