题目内容

如图,在一个直角三角形的内部作一个长方形ABCD,其中EB=5m,BF=12m,AB和BC分别在两直角边上.设AB=xm,长方形的面积为ym2,要使长方形的面积最大,其边长x应为(  )
A.
24
4
m
B.6mC.15mD.
5
2
m

根据题意得:AD=BC=
y
x
,上边三角形的面积为:
1
2
(5-x)
y
x
,右侧三角形的面积为:
1
2
x(12-
y
x
),
所以y=30-
1
2
(5-x)
y
x
-
1
2
x(12-
y
x
),
整理得y=-
12
5
x2+12x,
=-
12
5
[x2-5x+(
5
2
2-
25
4
],
=-
12
5
(x-
5
2
2+15,
∵-
12
5
<0
∴长方形面积有最大值,此时边长x应为
5
2
m.
故要使长方形的面积最大,其边长
5
2
m.
故选D.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网